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IMTRODUCTION 

CHEMICAL kinetics provides essential information about the 
material characteristics needed to solve the problem of chem- 
ically reactive flow systems and combustion processes. Gen- 
erally speaking, it is difficult to find an acceptable form of 
chemical reactions occurring in coal and liquid fuel com- 
bustion which are widely used in industry. In this study, coal 
combustion is only of interest due to the fact that the details 
of the chemical reactions in liquid fuel combustion are rather 
poorly understood with one exception of which a structural 
analogy can be considered between pyrolyzing softening 
coals (behaves like liquid above 650 K) and heavy oil droplets 
[I]. The concept of a Gaussian distribution of activation 
energies of chemically reactive species has been usually used 
and found to be reasonable in describing the combustion of 
coal, oil shale and cellulose [2, 31. 

The objective of this note is to determine the chemical rate, 
k,, and the extent of thermal decomposition, c, during the 
combustion of coal by employing a concept of Gaussian 
distributed activation energies. The present method for these 
calculations is an extension of the method described by 
Suuberg [4]. 

New development for determination of properties, mainly 
chemical rate, k,, and extent, 5, has been achieved with a 
few modifications to a previously developed model. Hence, 
approximate solutions have been obtained for the chemical 
rate, k,,, and the extent, 5, in terms of temperature, T, and 
critical activation energies, E,. 

FORMULATION 

Conversion of the chemical structure into so-called meta- 
plast (intermediates) is simply described by the following: 

Chemical structure7 Metaplast. 

The assumption is made here that there is a unique value 
of the Arrhenius pre-exponential, kO, regardless of the acti- 
vation energy. Constant k, models may indicate for example 
that the entropies of formation of activated complexes lead- 
ing to the release of a particular species are similar to those 
described above. 

The rate, k,, is now given as follows : 

where < is the fractional decomposition of the above struc- 
tures, or since 

+t 
0 

and 

(3) 

where Q is the amount of unreacted structure left at any 
time. 

If qk is some measure of the amount of material which will 
decompose with an activation energy, E, to yield volatile 
products, then 

Integration of equation (4) over time gives 

“=exp[-~k~exp(-DDE]. (5) 
%o 

The amount of species ‘k’ present at time zero is assumed 
to be given by a ~st~bution function, f(E), such that 

qko = Q, f(E) dE (6) 

where 

f(E) = 1 -exp[-*] (7) 
5m) 

where E0 is the mean activation energy of the distribution 
and cr the standard deviation. 

The total amount of decomposable material, Q, at any 
time may be obtained by integrating overall activation ener- 
gies as follows : 

Q= mqkdE. 
s 

(8) 
0 

The conversion, 5, then is given as 

C=l-S:exp[~-k,exp(-~)drl/~~~dg (9) 

The assumption has been made in the above equation that 
the pre-exponential factors, k,, for all species ‘k’ are equal. 
Apparently one can write the rate of loss of the material, qkr 
by taking the derivative in equation (8) as follows : 

da 
dt = -k,Q,f(E)dEexp 

xexp[~ -k,exp(-~)dt]. (10) 

This is the usual starting point for distributed activation 
energy analysis. Since this integral rarely leads to closed 
form solutions, numerical integration is generally employed. 
However, one can certainly investigate the behaviour of the 
integrand in equation (10) which allows the integrals of this 
type to be reduced to very simple functions. A closed form 
solution is given below and is useful in understanding the 
physics of the pyrolysis better. It also reduces the com- 
putational time. Considering the time integral, a general 
time-temperature history may be a heating period, an iso- 
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NOMENCLATURE 

b, cooling rate [KS-‘] 

h7 heating rate [KS-‘] 
E activation energy [Jmol-‘1 
E, mean activation energy of the distribution 

k [Jmo!-'l 

Q0 total mass of reactive species at time zero [kg] 
R universal gas constant. 8.314 J mol -’ K ’ 

1 
! 

I time [s] 1 
T temperature [K]. I 

k: 

chemical rate [s- ‘1 Greek symbols 
pm-exponential factor {lOI s -‘I 

I 
< extent of decomposition of the pyrolyzed material 1 

Yi mass of species ‘k’ present in pyrolyzing material C standard deviation [J moi ’ ] 
Ikgl 

/ 
s 

Qk total mass of reactive species at time t [kg] 

-i 

thermal period, and a cooling period. Often reasonable linear 
approximations are made to these periods. In our case an 
isothermal period is excluded for simplicity. 

During the heating period 

dT 
T=b,r+T, and dt=h, 

and during the cooling period 

dT 
T = ---h,t+T, and ;; = -b, (12) 

where Tp represents the maximum temperature attained dur- 
ing the course of combustion or pyrolysis. Inserting the defi- 
nition of f(E) and making a change of variables in the 
integral over time (changing to temperature) one obtains 

and considering the last integral over time (or temperature), 
one can use the fohowing apprOXimatiOn : 

T=1000K 

which is valid for the case E/RT>> 1. Then the rate k,, 
becomes 

At the beginning of the combustion process the tem- 
peratures are so low that the last term inside the double 
exponential can be neglected. Now if one lets F = F(E). then 

This function shows a steep behaviour so that the inte- 
grand may be approximated by a step function at the critical 
value of activation energy E = EC. At the values of E < EC. 
the integrand has a value of zero, while at E > EC, the double 
exponential term has a value of unity. This can be seen in 
Fig. 1. The problem often arises how exactly to determine 
the critical value of I?,, A new technique is now proposed 
resulting in a formula for the values of E,. 

Let 

ACTIVATION ENERGY E(kJ/mol) 

FIG. 1. F = F(E) curve. 
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Thus Table 1. Calculated values of critical activation energies, E, 

F=exp -$exp(-X) 
3 

As can be seen in Fig. 1, there will be a turning point 
during the steep rise. By taking the logarithm in equation 
(18) one can write 

Xexp(X)lnF= -A. (19) 

Taking the derivative with respect to X one has the fol- 
lowing for F’ : 

F’=-FlnF 1,;. 
( > 

Considering X >> 1 

F’ = -FlnF. (21) 

In order to find the turning point one can take the derivative 
once again 

F” = -F’(l +lnF). (22) 

At the turning point F” = 0 and obviously F’ # 0, thus 

lnF= -1. (23) 

Solving for F, one obtains 

F = exp (- 1) = 0.3678. (24) 

This turning point will also be in the vicinity of the critical 
value of E,. Since the steep rise occurs in a narrow range the 
critical value of EC will be calculated at the turning point. 
Thus one has 

lnX+X= 1nA. (25) 

The solution to this equation for X will give the critical 
value of X,. 

Let 

X0 = In A and X = X,(1 -0). (26) 

Here tJ << 1. This means the solution is approximately 
equal to X0. Then 

lnX,(l-(7)+X,(1-0) = 1nA (27) 

or 

lnX,+ln(l-0)+X,-X,6 = 1nA. (28) 

Since X,, = In A and In (l-0) = -8 for 0 << 1, one obtains 
the solution 

1nlnA 
0=---. 

l+lnA (29) 

Now one has the solution to the main equation as follows : 

.=(l-e)lnA. (30) 

This formula is very useful for obtaining the critical value 
of EC with great accuracy. Thus one only needs a hand cal- 
culator to determine the critical value of EC just knowing 
the parameter A or the pre-exponential kO, temperature T, 
heating rate b,,. Some of the critical values of EC and cor- 
responding temperatures are given in Table 1. Since one now 
has the value of EC, one can approximate the integral as 
follows : 

,.k,,l&exp[-w-&,]dE. (31) 

By mathematical manipulation one obtains the chemical 
rate, k,, as follows : 

k,=k,exp[&-g]*ierfc(u.) ifu,>0(32) 

T(K) InA x EC (kJ mol-‘) 

400 29.02 25.76 85.73 
500 29.24 25.98 108.05 
600 29.42 26.15 130.54 
700 29.57 26.30 153.17 
800 29.71 26.43 175.90 
900 29.82 26.54 198.74 

1000 29.93 26.64 221.67 
1100 30.02 26.74 244.68 
1200 30.11 26.82 267.76 
1300 30.19 26.90 290.90 

or 

kr,=k,exp[&-g](l-ierfclu,i) ifa,< 

(33) 

where 

EC-E, u 
u,=-+---. 

J2” J2RT 

The extent, r, can be calculated as follows : 

where the ratio Q/Q,, is approximated as 

g=L&exp[-w]dE. (36) 

Then for the ratio Q/Q0 

Q = lerfc(y,) 
Qo 2 

ify, > 0 

or 

Q 1 
e,= 1 -2erfc(Inl) ify,<O 

where 

Ec-Eo y,=-. 
J20 

Now for the extent, l, one has 

or 

5 = 1 
1 

- 2erfc(y,) ify, z 0 

where 

5 = 
1 
-erfc(l_vel) 
2 

ify, < 0 

K--E, 
Yc = __ 

J20 

(34) 

(35) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

CONCLUDING REMARKS 

Since the chemical rate, k,, the extent, 5, and the ratio, 
Q/QO, depend on the critical activation energy, EC, one only 
needs to calculate the value of EC to determine these prop- 
erties. Of course, all these properties also depend on the 
selection of the mean activation energy, E,,. and the standard 
deviation, 0. In this study, the values of E,, = 209.4 kJ mall’, 
(r = 41.9 kJ mol-’ and b,, = 1000 K s-’ have been chosen 

VI. 
The key result is the estimate of the value of critical acti- 
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vation energy, E,, which is given by 

E, = XcRT where X, = I - =nA In A. (43) 
! 1”1”“1 I 

Thus for the critical value of E, one obtains 

3. 
With this value of Z$ in hand, one obtains the pyrolyzed 

material ratio, Q/Q, from equations (37) and (38). The 4. 
graphical representation of Q/Q,, for different temperatures 
can be seen in Fig. 2. 
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INTRODUCTION 

MANY STUDIES have been done in the past concerning natural 
convection heat transfer into a fluid medium of infinite 
extent. More recently several studies have examined natural 
convection heat transfer to an enclosed fluid, where the con- 
vective motion is limited. Useful correlation equations have 
been developed for each case. 

One difficulty often encountered in using these empirical 
equations is determining the range of gap width over which 
the equations for convection within an enclosure are appli- 

cable and when theequations for heat transfer into an infinite 
atmosphere apply. The object of this study was to examine 
heat transfer within an enclosure, increasing the gap width 
ratio over that studied previously to determine the bounds 
within which enclosure equations are appiicable. The existing 
correlation equations were first analyzed to determine the 
range of gap width ratios which would most likely form the 
bounds for the two sets of equations. Bodies of varying sizes 
were then built to cover the range of gap width ratios required 
by the analysis. 

The analysis showed that for Ra, ranging from 10’ to IO”‘, 


